logo
Tentang Kami
Mitra Profesional & andal Anda.
WEL International bermarkas di Shenzhen, Cina. Saat ini ada satu pabrik injeksi / cetakan plastik (Yusu Precision) di Huizhou, China dan satu pabrik pemesinan CNC (WEL Precision) di Donguan,Cina. Diperkirakan pada tahun 2009. Sejauh ini, ada 150 karyawan yang bekerja di sini. GB / T19001-2016/ISO9001: 2015 dan IATF 16949: 2016 disertifikasi.WEL menyediakan layanan pelanggan dalam semua aspek pengembangan produk: Desain Konstruksi Produk, Pemilihan Bahan, Desain Cetakan, pembuatan cetakan dan ...
Pelajari Lebih Lanjut

0

Tahun Didirikan

0

Juta+
karyawan

0

Juta+
Pelanggan Dilayani

0

Juta+
Penjualan Tahunan
Cina WEL Techno Co., LTD. Kualitas Tinggi
Segel kepercayaan, pemeriksaan kredit, RoSH dan penilaian kemampuan pemasok. Perusahaan memiliki sistem kontrol kualitas yang ketat dan laboratorium pengujian profesional.
Cina WEL Techno Co., LTD. Pengembangan
Tim desain profesional internal dan bengkel mesin canggih. Kita bisa bekerja sama untuk mengembangkan produk yang Anda butuhkan.
Cina WEL Techno Co., LTD. Pengolahan
Mesin otomatis canggih, sistem kontrol proses yang ketat. Kami dapat memproduksi semua terminal listrik di luar permintaan Anda.
Cina WEL Techno Co., LTD. 100% pelayanan
Kemasan besar dan kecil yang disesuaikan, FOB, CIF, DDU dan DDP. Biarkan kami membantu Anda menemukan solusi terbaik untuk semua masalah Anda.

kualitas Roda Gigi Mesin CNC & Bagian Mesin Cnc produsen

Carilah produk yang lebih sesuai dengan kebutuhan Anda.

Produk yang Direkomendasikan

Carilah produk yang lebih sesuai dengan kebutuhan Anda.
Kasus & Berita
Titik Panas Terbaru
Manufaktur Bagian CNC: Membentuk Seni Presisi Industri Modern
Dalam panorama besar industri modern, manufaktur bagian CNC (Computer Numerical Control) tidak diragukan lagi adalah mutiara yang cemerlang.telah menjadi teknologi kunci yang sangat diperlukan dalam industri manufaktur, memberikan dukungan yang kuat untuk inovasi dan pengembangan di berbagai bidang. Inti dari pembuatan bagian CNC terletak pada kontrol yang tepat dari program komputer. Melalui kode yang ditulis sebelumnya, alat mesin dapat memproses sesuai dengan jalur dan parameter yang ditetapkan,Dengan demikian mencapai pembentukan presisi tinggi dari bagianMetode kontrol digital ini tidak hanya sangat mengurangi kesalahan manusia, tetapi juga membuat pembuatan bagian berbentuk kompleks mudah.   Apakah itu komponen di bidang kedirgantaraan dengan persyaratan yang sangat tinggi untuk kekuatan dan presisi, atau komponen di bidang perangkat medis yang membutuhkan pemasangan yang tepat,Manufaktur CNC dapat memenuhi standar yang ketat. Ambillah pisau mesin pesawat sebagai contoh. Bentuknya rumit dan mereka perlu menahan kondisi ekstrem seperti suhu tinggi dan tekanan tinggi.Metode manufaktur tradisional sering kali berjuang untuk mencapai presisi dan kualitas yang dibutuhkanNamun, dengan mengadopsi teknologi pemrosesan CNC,permukaan melengkung kompleks bilah dapat dibentuk dengan tepat untuk memastikan operasi yang efisien pada kecepatan tinggi sambil menjamin kinerja dan keandalan mesin. Keuntungan dari manufaktur bagian CNC tidak hanya tercermin dalam presisi, tetapi efisiensi juga tak tertandingi oleh metode manufaktur tradisional.mesin alat dapat beroperasi terus-menerus tanpa intervensi manual yang seringSelain itu, alat mesin CNC dapat mencapai pemrosesan penghubung multi-sumbu dan menyelesaikan pemrosesan beberapa permukaan atau beberapa proses sekaligus,memperpendek siklus produksi lebih lanjut. Sebagai contoh, dalam industri manufaktur otomotif, pengolahan blok mesin digunakan untuk memerlukan beberapa proses dan memakan banyak waktu.Pengolahan beberapa permukaan dapat diselesaikan dalam satu setup, meningkatkan efisiensi produksi dan mengurangi biaya produksi. Pada saat yang sama, fleksibilitas pembuatan bagian CNC juga salah satu fitur utamanya.alat mesin dapat dengan cepat beralih untuk memproduksi bagian yang berbeda untuk beradaptasi dengan perubahan yang cepat dan beragam kebutuhan pasarKemampuan respon cepat ini sangat penting untuk produksi batch kecil dan kustomisasi. Dalam bidang elektronik konsumen, pembaruan produk sangat cepat, dan permintaan untuk suku cadang yang disesuaikan juga meningkat.Manufaktur CNC dapat dengan cepat menyesuaikan produksi sesuai dengan perubahan desain dan tepat waktu meluncurkan produk baru yang memenuhi permintaan pasar. Namun, manufaktur suku cadang CNC tidak tanpa tantangan. Biaya investasi peralatan yang tinggi adalah masalah penting yang dihadapi perusahaan.yang dapat menjadi beban berat bagi beberapa perusahaan kecil dan menengahSelain itu, kekurangan bakat teknis juga merupakan salah satu faktor yang membatasi perkembangan industri.operasi dan pemeliharaan relatif langka, dan pelatihan dan pengenalan bakat perlu diperkuat. Untuk mempromosikan pembangunan berkelanjutan industri manufaktur suku cadang CNC, inovasi teknologi tidak pernah berhenti.Bahan alat canggih dan teknologi pelapis terus muncul, meningkatkan kinerja pemotongan dan umur alat; sistem pemantauan cerdas dapat memantau status operasi mesin alat secara real time, memberikan peringatan dini atas kesalahan,dan meningkatkan stabilitas dan tingkat penggunaan peralatanTeknologi manufaktur aditif dan pengurangan gabungan juga berkembang secara bertahap, memberikan lebih banyak kemungkinan untuk pembuatan bagian yang kompleks. Dengan munculnya era Industri 4.0, manufaktur suku cadang CNC sangat terintegrasi dengan teknologi seperti Internet of Things, data besar dan kecerdasan buatan.Melalui pengumpulan dan analisis data produksi secara real-time, optimasi proses produksi dan manajemen cerdas dicapai, meningkatkan efisiensi produksi, mengurangi biaya dan meningkatkan kualitas produk. Di masa depan, manufaktur suku cadang CNC akan terus memainkan peran penting dalam industri modern.tetapi juga kekuatan penting yang mempromosikan transformasi dan peningkatan industri manufaktur menuju kecerdasanKita memiliki alasan untuk percaya bahwa dengan kemajuan dan inovasi teknologi yang terus-menerus,Manufaktur suku cadang CNC akan menciptakan lebih banyak kejutan bagi kita dan membentuk masa depan industri yang lebih indah. Kesimpulannya, manufaktur suku cadang CNC, dengan presisi tinggi, efisiensi tinggi dan fleksibilitas, telah menjadi kekuatan pendorong yang kuat untuk pengembangan industri modern.Inovasi dan integrasi terus menerus akan membawa ke masa depan yang lebih mulia dan menciptakan lebih banyak nilai dan kemungkinan bagi umat manusia.
Aplikasi CNC dalam Industri Otomotif
Teknologi CNC (Computer Numerical Control) memainkan peran penting dalam industri otomotif.   Pertama, dalam pembuatan mesin otomotif, CNC digunakan untuk mengolah berbagai komponen presisi tinggi seperti blok silinder, kepala silinder, poros engkol, dll.Komponen-komponen ini memiliki bentuk yang kompleks dan membutuhkan akurasi dimensi dan kualitas permukaan yang sangat tinggi.   Melalui mesin CNC, kinerja dan keandalan mesin dapat dijamin.   Sebagai contoh, CNC dapat dengan akurat mengolah lubang silinder dari blok silinder, memastikan bulatnya dan silindernya, mengurangi kerugian gesekan, dan meningkatkan efisiensi bahan bakar mesin.   CNC juga banyak digunakan dalam sistem transmisi otomotif.membutuhkan pemesinan presisi tinggi untuk memastikan transmisi yang lancar dan tahan lama.   Mengambil gigi sebagai contoh, CNC dapat memproduksi gigi dengan profil gigi yang tepat dan kinerja meshing yang baik, mengurangi kebisingan dan getaran, dan meningkatkan efisiensi transmisi.   Komponen sasis mobil juga bergantung pada teknologi CNC.dan komponen lain dalam sistem suspensi dapat memenuhi persyaratan toleransi yang ketat melalui mesin CNC, memastikan pengendalian dan stabilitas mengemudi kendaraan.   Selain itu, beberapa komponen kompleks di interior mobil, seperti panel dekoratif dari konsol tengah dan mekanisme pengaturan kursi,juga dapat dipersonalisasi dan presisi tinggi diproduksi dengan bantuan CNC.   Misalnya, beberapa merek mobil kelas atas menggunakan mesin CNC untuk membuat bagian dekoratif logam yang unik, meningkatkan kemewahan interior.   Singkatnya, penerapan teknologi CNC di bidang otomotif memberikan dukungan yang kuat untuk kinerja, kualitas, dan personalisasi mobil,dari sistem tenaga inti ke interior yang nyaman.
Common materials, advantages and applications of CNC precision machining
.gtr-container-a1b2c3d4 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; color: #333; line-height: 1.6; padding: 15px; max-width: 100%; box-sizing: border-box; margin: 0 auto; } .gtr-container-a1b2c3d4 p { font-size: 14px; margin-bottom: 1em; text-align: left !important; word-break: normal; overflow-wrap: normal; } .gtr-container-a1b2c3d4 .gtr-section-title { font-size: 18px; font-weight: bold; margin-top: 2em; margin-bottom: 1em; color: #222; text-align: left; } .gtr-container-a1b2c3d4 .gtr-subsection-title { font-size: 16px; font-weight: bold; margin-top: 1.5em; margin-bottom: 0.8em; color: #333; text-align: left; } .gtr-container-a1b2c3d4 ul, .gtr-container-a1b2c3d4 ol { list-style: none !important; margin: 0 0 1em 0 !important; padding: 0 !important; } .gtr-container-a1b2c3d4 li { font-size: 14px; margin-bottom: 0.5em; padding-left: 25px; position: relative; text-align: left; } .gtr-container-a1b2c3d4 ul li::before { content: "•"; color: #007bff; font-weight: bold; display: inline-block; width: 1em; margin-left: -1.5em; position: absolute; left: 0; top: 0; } .gtr-container-a1b2c3d4 ol li::before { content: counter(list-item) "."; counter-increment: none; color: #007bff; font-weight: bold; display: inline-block; width: 1.5em; margin-left: -2em; text-align: right; position: absolute; left: 0; top: 0; } .gtr-container-a1b2c3d4 img { max-width: 100%; height: auto; display: block; margin: 1.5em auto; } .gtr-container-a1b2c3d4 .gtr-image-gallery { display: flex; flex-wrap: wrap; gap: 10px; justify-content: center; margin: 1.5em 0; } .gtr-container-a1b2c3d4 .gtr-image-gallery img { flex: 1 1 100%; margin: 0; } @media (min-width: 768px) { .gtr-container-a1b2c3d4 { padding: 25px 50px; } .gtr-container-a1b2c3d4 .gtr-image-gallery img { flex: 1 1 calc(50% - 5px); } } CNC precision machining is the process of creating parts by cutting and shaping raw materials. This process relies on computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies. These software not only provide detailed 3D models but also optimize machining paths to ensure precise part manufacturing, thereby improving production efficiency and quality. Precision machining has become a vital component of modern manufacturing, requiring close collaboration between professional designers and engineers. Designers create product models and translate them into executable manufacturing instructions, while engineers optimize machining parameters to ensure feasibility. Finally, technicians input the prepared CNC code into the CNC machine, executing the machining operations to ensure that the part meets precision requirements. Precision machining is widely used in a variety of industries, including automotive parts, medical devices, and electronic components. Advanced CNC machine tools enable the production of high-precision parts with complex geometries. While CNC machine tools typically maintain tolerances of ±0.005 inches, CNC precision machining can achieve even higher precision, reaching tolerances of ±0.002 inches or even ±0.0002 inches to meet the stringent dimensional accuracy requirements of high-end manufacturing. Common Types of CNC Precision Machine Tools Precision CNC machining involves a variety of technologies to ensure the production of high-quality parts. Different machining processes utilize different types of machine tools. Some require only a single CNC machine, while more complex processes may require multiple machines working in concert. 1. CNC Milling Machines CNC milling machines use a rotating cutting tool to remove material and reshape a fixed raw material. These machines can produce a wide range of geometries, primarily in two categories: face milling and peripheral milling. Face milling: Capable of machining features such as flat surfaces and shallow cavities. Peripheral milling: Used for machining deeper features such as threads and grooves. CNC precision milling machines are typically used to manufacture square or rectangular parts and achieve high-precision machining. 2. CNC Lathes CNC lathes differ from CNC turning machines in that, unlike CNC milling machines, which use a fixed workpiece and rotating cutting tool, CNC lathes utilize a rotating workpiece and a fixed cutting tool. The tool moves along the workpiece's axis, removing material layer by layer to achieve the desired diameter and features. A CNC Swiss lathe is a special type of CNC lathe that uses a guide bushing to support the workpiece while simultaneously feeding it axially. This design provides more stable support and higher part accuracy, making it particularly suitable for machining slender parts and those with tight tolerances. CNC lathes can produce internal and external features on parts, such as: Holemaking (drilling, countersinking, reaming); Internal and external threads (tapping, threading); Tapers and grooves; and other common parts. 3. CNC Drilling Machines CNC drilling machines use a rotating drill bit to create cylindrical holes in materials. These drills are typically multi-edge tools that evacuate chips efficiently, ensuring high-quality holes. Common drill bit types include: Spotting drills: Used for shallow or pilot holes. Drill presses: Used for custom drilling. Screw drills: Allow direct drilling without pre-drilling a pilot hole. Chucking drills: Used to enlarge existing holes and improve precision. Peck drills: Reduce chipping during machining and improve hole quality. 4. Electrical Discharge Machine Electrical discharge machining (EDM) uses controlled electrical sparks to remove material and achieve precision shaping. During machining, the workpiece is placed beneath a wire electrode. The CNC machine tool releases high-frequency electrical sparks through the wire electrode, locally melting the metal material. The melted portion is then flushed away with an electrolyte to form the desired shape. EDM is suitable for machining high-hardness materials and complex, small features such as precision slots, micro-holes, bevels, and tapers. It is particularly suitable for metals that are difficult to machine using traditional machining. 5. CNC Plasma Cutting Machine CNC plasma cutting machines use a high-temperature plasma arc to cut conductive materials. Their plasma torch can reach temperatures exceeding 50,000°F (approximately 27,760°C), rapidly melting the material and achieving precise cuts. Plasma cutting is suitable for conductive metals such as steel, aluminum, stainless steel, copper, and brass. 6. CNC Precision Grinder CNC precision grinders are used to process parts with stringent surface finish requirements. While CNC lathes and milling machines are typically used for initial roughing, precision grinders can perform high-precision surface finishing, ensuring micron-level smoothness. Precision grinding is particularly critical in the manufacturing of molds, precision bearings, optical components, and medical devices. Common Materials Used in CNC Precision Machining CNC precision machining can be used on a wide variety of materials, generally categorized as metals and plastics. Metal Materials CNC precision machining is widely used on a wide variety of metal materials, regardless of their hardness or strength, enabling efficient and high-precision cutting through advanced machining techniques. Common CNC machined metals include: Aluminum – Lightweight and corrosion-resistant, suitable for use in the aerospace, automotive, and electronics industries. Steel – High mechanical strength, suitable for structural and mechanical parts. Stainless steel – Corrosion-resistant, widely used in the medical, food processing, and chemical equipment industries. Copper – Excellent electrical and thermal conductivity, commonly used in electrical components and heat sinks. Brass – Excellent machinability, suitable for precision instruments, valves, and decorative parts. Bronze – High wear resistance, commonly used in bearings, gears, and marine equipment. Titanium – High strength, lightweight, and corrosion resistance, widely used in aerospace, medical implants, and other fields. Plastic Materials CNC precision machining is not only suitable for conventional plastics, but also for a variety of engineering plastics to meet diverse application requirements. CNC machining enables cost-effective production while ensuring quality. Common CNC plastic machining materials include: Acrylonitrile butadiene styrene (ABS) – offers excellent mechanical properties and impact resistance, making it suitable for automotive parts and consumer electronics. Polycarbonate (PC) – is transparent, strong, and heat-resistant, making it widely used in optical components and protective covers. Polymethyl methacrylate (PMMA) – offers high transparency and is suitable for applications such as lamp covers and display panels. Polyoxymethylene (POM) – offers high mechanical strength and wear resistance, making it suitable for precision parts such as gears and pulleys. Polyamide (PA) – offers excellent wear resistance and toughness, making it suitable for mechanical components and engineering structures. Advantages of High-Precision Machining In precision manufacturing, high accuracy and repeatability are key requirements for cost-effective and high-quality production. CNC precision machining offers several advantages that can meet stringent performance and quality requirements. The following are the key advantages of CNC precision machining: 1. Advanced Machining Technology CNC precision machining utilizes cutting-edge manufacturing technology, aligning with Industry 4.0 standards. This significantly reduces reliance on manual labor and enables precise control of the operation of large-scale machinery. Regardless of the type of CNC machine used, computer programs enable a high degree of automation, precisely controlling the cutting tools to process a wide range of raw materials, ensuring the finished product is dimensional and consistent. 2. Superior Performance and High Reliability While traditional machining methods can meet certain application requirements, for parts with stringent tolerances, only high-precision machining can ensure consistent quality. Furthermore, many industries require high-volume production of identical parts. CNC precision machining offers exceptional repeatability, ensuring that each workpiece maintains consistent dimensions and quality, meeting stringent industry standards. 3. Broad Material Compatibility and Applications CNC precision machining is suitable for a wide range of materials, including high-performance metals and engineering plastics. This provides flexibility across various industries, enabling companies to customize high-precision parts and enhance their market competitiveness. Furthermore, high-precision machining consistently meets stringent engineering tolerances, enhancing customer confidence. Industries such as automotive, aerospace, marine, agriculture, consumer electronics, and precision manufacturing can benefit from CNC precision machining. 4. Stable and reliable part quality The quality of CNC precision machining far exceeds that of traditional machining methods. By utilizing computer numerical control (CNC) technology, it effectively eliminates errors caused by manual operation, ensuring part consistency and accuracy. CNC machine tools can operate for extended periods of time, and combined with advanced software control, they can achieve ultra-high precision even on complex parts, meeting or exceeding customer quality standards. 5. Shortened production cycles and reduced labor costs Compared to traditional machining, CNC precision machining offers a higher level of automation and faster production efficiency. It eliminates the need for frequent manual adjustments and can quickly respond to large-scale production demands. Traditional machining requires manual monitoring, tool adjustment, and speed control, significantly impacting efficiency. CNC machining allows for direct execution of offline programmed machining programs. A single operator can manage multiple machines, performing tool changes, setups, offline deburring, and quality inspections, significantly reducing reliance on manual labor and lowering labor costs. This efficient production model ensures faster part production and shorter lead times, regardless of production volume. Applications of CNC Precision Machining CNC precision machining is widely used across multiple industries due to its efficient production, cost advantages, wide applicability, and superior quality. The following are key applications of CNC precision machining in various industries: 1. Automotive Industry The automotive industry is experiencing rapid technological innovation, with the continuous emergence of new components and the accelerating pace of vehicle upgrades. Automakers widely use CNC precision machining to produce high-quality prototypes for functional testing and market validation before entering mass production, ensuring that designs are optimized and meet actual needs. 2. Medical Industry Medical devices require extremely high precision and must meet stringent tolerances. Examples include: Orthopedic devices Safety enclosures Implants MRI-compatible components These critical components often require precise dimensional control and consistent quality. CNC precision machining is the optimal manufacturing method to ensure these devices meet industry standards. 3. Aerospace Industry The aerospace industry places extremely high demands on component precision and reliability; even the slightest error can endanger personnel safety. Therefore, CNC precision machining is widely used in the manufacture of: Landing gear components Bushings Fluid manifolds Wing components The manufacture of these components requires high-precision, multi-axis machining technology to ensure compliance with the rigorous standards of the aerospace industry. 4. Electronics Industry Consumer electronics are trending towards miniaturization, high performance, and lightweighting, placing extremely stringent tolerances on components. CNC precision machining enables high-precision, high-volume production to meet industry demands. Common electronic components include: Semiconductor chips Heatsinks Circuit boards Other electronic components CNC machine tools can process tiny, precise structures, ensuring the performance and stability of electronic products. 5. Military and Defense Industry Defense and military equipment require high-strength, durable, and precision components to ensure reliability in complex environments. CNC precision machining is suitable for manufacturing a variety of military parts, such as: Ammunition components Communications equipment parts Aircraft and ship components Precision machining ensures the high quality and consistency of these critical components, meeting the stringent requirements of the military industry. CNC precision machining not only enables the production of high-precision custom parts, but also reduces costs, accelerates time to market, and improves product performance, providing companies with a competitive advantage.

2025

09/12

Overview of CNC machining: CNC machining process, common processes and advantages
.gtr-container-p5q8r3 { font-family: Verdana, Helvetica, "Times New Roman", Arial, sans-serif; color: #333; line-height: 1.6; padding: 20px; max-width: 960px; margin: 0 auto; box-sizing: border-box; } .gtr-container-p5q8r3 p { font-size: 14px; margin-bottom: 1em; text-align: left !important; word-break: normal; overflow-wrap: normal; } .gtr-container-p5q8r3 .gtr-heading-main { font-size: 18px; font-weight: bold; margin-top: 30px; margin-bottom: 15px; color: #0056b3; text-align: left; } .gtr-container-p5q8r3 .gtr-heading-sub { font-size: 16px; font-weight: bold; margin-top: 20px; margin-bottom: 10px; color: #0056b3; text-align: left; } .gtr-container-p5q8r3 img { max-width: 100%; height: auto; display: block; margin: 20px auto; } .gtr-container-p5q8r3 ul, .gtr-container-p5q8r3 ol { list-style: none !important; margin: 0 0 1em 0 !important; padding: 0 !important; } .gtr-container-p5q8r3 li { font-size: 14px; margin-bottom: 0.5em; padding-left: 25px; position: relative; text-align: left; } .gtr-container-p5q8r3 li::before { content: "•"; color: #0056b3; font-size: 1.2em; position: absolute; left: 0; top: 0; line-height: 1.6; } @media (min-width: 768px) { .gtr-container-p5q8r3 { padding: 30px 40px; } .gtr-container-p5q8r3 .gtr-heading-main { font-size: 20px; margin-top: 40px; margin-bottom: 20px; } .gtr-container-p5q8r3 .gtr-heading-sub { font-size: 18px; margin-top: 25px; margin-bottom: 12px; } } CNC machining (Computer Numerical Control Machining) is a precision manufacturing process based on computer program control. It utilizes a computer numerical control (CNC) system connected to the machine tool to control the machine's cutting tools. G-codes and M-codes containing machining parameter instructions, derived from the CAD model, are forwarded to the machine tool. The machine then follows a pre-set path through turning, drilling, milling, and other machining operations, removing material from the workpiece. This allows for precise machining of materials such as metal, plastic, and wood, resulting in parts or products that meet design requirements. Five Key Steps in CNC Machining CNC machining typically involves four basic steps, and regardless of the machining process used, the following process must be followed: Step 1: Designing the CAD Model The first step in CNC machining is to create a 2D or 3D model of the product. Designers typically use AutoCAD, SolidWorks, or other CAD (computer-aided design) software to build an accurate model of the product. For more complex parts, 3D modeling can more clearly demonstrate product features such as tolerances, structural lines, threads, and assembly interfaces. Step 2: Converting to a CNC-Compatible Format CNC machines cannot directly read CAD files. Therefore, CAM (computer-aided manufacturing) software, such as Fusion 360 and Mastercam, is required to convert the CAD model into CNC-compatible numerical control code (such as G-code). This code instructs the machine tool to execute precise cutting paths, feed rates, tool motion paths, and other parameters to ensure machining accuracy. Step 3: Select the Appropriate Machine Tool and Set Machining Parameters Based on the part's material, shape, and machining requirements, select an appropriate CNC machine (such as a CNC milling machine, lathe, or grinder). The operator then performs the following preparatory tasks: Install and calibrate the tool Set parameters such as machining speed, feed rate, and depth of cut Ensure the workpiece is securely fixed to prevent movement during machining Step 4: Perform CNC Machining Once all preparatory steps are complete, the CNC machine tool can execute the machining task according to the pre-set CNC program. The machining process is fully automated, with the tool cutting along the defined path until the part is formed. Step 5: Quality Inspection and Post-Processing After machining, the part undergoes quality inspection to ensure that its dimensional accuracy and surface finish meet the design requirements. Inspection methods include: Dimensional measurement: Dimensional inspection using calipers, micrometers, or a coordinate measuring machine (CMM) Surface finish inspection: Checking the surface roughness of the part to determine if additional polishing or painting is necessary Assembly testing: If the part will be assembled with other components, assembly testing is performed to ensure compatibility If necessary, post-processing such as deburring, heat treatment, or surface coating may be performed to enhance part performance and durability. Key Responsibilities of a CNC Technician Although the CNC machining process is automated, CNC technicians still play a vital role in addressing both expected and unexpected failures and ensuring smooth machining. The following are the main responsibilities of a CNC technician: Confirming Product Specifications: Accurately understanding product dimensions, tolerances, and material requirements based on order requirements and technical documentation. Interpreting Engineering Drawings: Reading blueprints, hand sketches, and CAD/CAM files to understand product design details. Creating CAE Models: Utilizing Computer-Aided Engineering (CAE) software to optimize machining plans and improve machining accuracy and efficiency. Aligning and Adjusting Tools and Workpieces: Ensures that cutting tools, fixtures, and workpieces are properly installed and adjusted for optimal machining conditions. Installing, Operating, and Disassembling CNC Machines: Properly installing and disassembling CNC machines and their accessories, and proficiently operating various CNC equipment. Monitoring Machine Operation: Observing machine speed, tool wear, and machining stability to ensure proper operation. Inspection and Quality Control of Finished Products: Inspect finished parts to identify defects and ensure they meet quality standards. Confirm Part Conformity with CAD Model: Compare the actual part to the CAD design to confirm that the product's dimensions, geometry, and tolerances accurately meet design requirements. The CNC technician's professional skills and meticulous approach are crucial to ensuring machining quality, improving production efficiency, and reducing scrap, and are an integral part of the CNC machining system. Common CNC Machining Processes CNC (Computer Numerical Control) machining technology is widely used in the manufacturing industry for precision machining of various metal and non-metal materials. Different CNC machining processes are required depending on the machining requirements. The following are some common CNC machining processes: 1. CNC Milling CNC milling is a machining method that uses a rotating tool to cut workpieces. It is suitable for machining flat surfaces, curved surfaces, grooves, holes, and complex geometric structures. Its main features are as follows: It is suitable for machining a variety of materials, such as aluminum, steel, stainless steel, and plastics. It is capable of high-precision and high-efficiency multi-axis machining (such as 3-axis, 4-axis, and 5-axis milling). It is suitable for mass production of precision parts, such as housings, brackets, and molds. 2. CNC Lathe Machining CNC lathes use a rotating workpiece and a fixed tool for cutting. They are primarily used for machining cylindrical parts, such as shafts, rings, and disks. Their main features are as follows: It is suitable for efficient machining of symmetrical rotating parts. It can process internal and external circles, tapered surfaces, threads, grooves, and other structures. Suitable for mass production, it is commonly used in the manufacturing of automotive parts, aviation bearings, electronic connectors, and more. 3. CNC Drilling CNC drilling is the process of machining through or blind holes in a workpiece. It is typically used for screw holes, pin holes, and other components used in part assembly. Its main features are as follows: Suitable for machining holes of various depths and diameters. Can be combined with tapping to create threads within the hole. Applicable to a variety of materials, including metals, plastics, and composites. 4. CNC Boring CNC boring is used to enlarge or fine-tune existing holes to improve dimensional accuracy and surface finish. Its main features are as follows: Suitable for machining high-precision, large-sized holes. Commonly used for parts requiring tight tolerance control, such as engine blocks and hydraulic cylinders. Can be combined with other processes, such as milling and turning, to achieve more complex machining needs. 5. CNC Electric Discharge Machining (EDM) Electrodischarge machining (EDM) uses pulsed electrical discharges between an electrode and a workpiece to remove material. It is suitable for machining high-hardness materials and complex parts. It is suitable for materials difficult to machine with traditional cutting methods, such as carbide and titanium alloys. It can process fine details and high-precision molds, such as injection molds and precision electronic components. It is suitable for stress-free machining without mechanical damage to the workpiece surface. CNC machining processes are diverse, each with its own unique characteristics, suited to different machining needs. Milling, turning, and drilling are the most common basic processes, while EDM, laser cutting, and water jet cutting are suitable for machining specialized materials and complex structures. Choosing the right CNC machining process not only improves production efficiency but also ensures part precision and quality, meeting the high standards of modern manufacturing. Advantages of Choosing CNC Machining CNC (Computer Numerical Control) machining has become a core technology in modern manufacturing. Compared to traditional manual or semi-automatic machining methods, CNC machining offers higher precision, efficiency, and consistency. The following are the main advantages of choosing CNC machining: High Precision and Consistency CNC machining uses computer programs to control tool movement, ensuring precise dimensions and shape for every workpiece. Compared to traditional machining methods, CNC machining can achieve micron-level accuracy and ensure consistency across mass production, eliminating product deviations caused by human error. It is suitable for machining parts with high tolerance requirements, such as in industries such as aerospace, medical devices, and electronics. Multi-axis machining (such as 5-axis CNC) can also be used to achieve complex geometries, reducing setup times and improving precision. Improved Production Efficiency CNC machine tools can operate continuously, reducing manual intervention and improving production efficiency. Furthermore, through automatic tool changing (ATC) and multi-axis machining technology, CNC machines can complete multiple machining steps in a single setup, significantly shortening production cycles and making them suitable for large-scale production. This reduces tool change and machine setup time, thereby increasing output per unit time. Compared to traditional manual machining, CNC machines can operate 24/7, reducing production costs. Strong Capability for Complex Part Processing CNC machining can easily handle parts with complex geometries and high precision requirements. Multi-axis CNC machines, in particular, can complete multi-surface machining in a single operation, avoiding the accumulation of errors caused by repeated clamping. This makes them suitable for industries with high part complexity requirements, such as aerospace, medical devices, and automotive manufacturing. They can also process spiral shapes, complex internal structures, and curved surfaces, which are difficult to achieve using traditional processes. Compatibility with Various Materials CNC machining is suitable for a wide range of materials, including metals (aluminum alloys, stainless steel, titanium alloys, copper, etc.), plastics (POM, ABS, nylon, etc.), composite materials, and ceramics. This allows CNC machining to meet the needs of diverse application scenarios. Furthermore, CNC machining can also process high-strength and high-hardness materials, such as aircraft-grade titanium alloys and high-strength stainless steel, making it suitable for precision component manufacturing in various industries, including electronics, medical, and automotive. Reduced Production Costs Although CNC machining requires a significant initial investment in equipment, it can significantly reduce unit costs in the long term. Its high machining capacity, low scrap rates, and labor-saving features make CNC machining more economical for large-scale production.

2025

09/12

Metode pemilihan material dan perawatan permukaan untuk pegas baterai
Baterai sangat penting dalam pengoperasian sebagian besar perangkat elektronik,memberikan catu daya yang diperlukan. Dalam koneksi antara baterai dan sirkuit,beku baterai adalah komponen penting,meskipun mungkin tidak terlihat secara visual. Fungsi utamanya adalah untuk memastikan koneksi yang stabil antara baterai dan sirkuit, sehingga menjamin aliran arus listrik yang lancar.Di bawah ini adalah pengenalan rinci tentang proses pemilihan bahan dan perawatan permukaan untuk pegas baterai.     Pemilihan Materi   1, Fosfor Perunggu: Ini adalah bahan yang paling umum digunakan untuk pegas baterai dan banyak digunakan dalam berbagai elektronik konsumen dan kasus baterai.Perunggu fosfor memiliki konduktivitas listrik dan elastisitas yang baikSelain itu, ketahanan korosi memastikan kinerja yang dapat diandalkan di berbagai lingkungan.   2, Baja tahan karat:Ketika biaya adalah pertimbangan yang signifikan,baja tahan karat adalah alternatif yang ekonomis.Oleh karena ituMata air baterai stainless steel biasanya digunakan dalam aplikasi di mana konduktivitas listrik bukan perhatian utama.   3, Beryllium Copper:Untuk aplikasi yang membutuhkan konduktivitas listrik dan elastisitas yang lebih tinggi, beryllium copper adalah pilihan yang ideal.Ini tidak hanya memiliki konduktivitas listrik yang sangat baik tetapi juga memiliki modulus elastis yang baik dan ketahanan kelelahan,membuatnya cocok untuk produk elektronik high-end.   4, 65Mn Spring Steel:Dalam beberapa aplikasi khusus,seperti heat sinks dari kartu grafis laptop,65Mn spring steel dapat digunakan untuk spring baterai.mempertahankan kinerja yang stabil di bawah beban yang signifikan.   5, Kuningan: Kuningan adalah bahan lain yang umum digunakan untuk pegas baterai, menawarkan konduktivitas listrik yang baik dan kemampuan mesin.Ini biasanya digunakan dalam aplikasi di mana biaya dan konduktivitas listrik adalah pertimbangan penting.     Pengolahan Permukaan   1, Nickel Plating:Nickel plating adalah metode perawatan permukaan umum yang meningkatkan ketahanan korosi dan ketahanan keausan dari pegas baterai.Lapisan nikel juga meningkatkan konduktivitas listrik, memastikan kontak yang baik antara pegas baterai dan baterai.   2, Plating Perak:Plating Perak dapat lebih meningkatkan konduktivitas listrik dan ketahanan oksidasi dari mata air baterai.Perak memiliki konduktivitas listrik yang sangat baik,mengurangi resistensi kontak dan memastikan transmisi arus yang stabilNamun,biaya plating perak relatif tinggi,biasanya digunakan dalam situasi di mana konduktivitas listrik yang tinggi diperlukan.   3, Plating Emas:Untuk produk high-end,plating emas adalah perawatan permukaan yang ideal.Emas memiliki konduktivitas listrik yang luar biasa dan ketahanan oksidasi,memberikan kinerja listrik yang stabil jangka panjang.Lapisan emas juga mencegah oksidasi dan korosi, memperpanjang umur layanan dari mata air baterai.     Tren Masa Depan   Karena produk elektronik terus berkembang menuju miniaturisasi dan kinerja yang lebih tinggi,desain dan pembuatan pegas baterai juga berkembang.mungkin muncul bahan berkinerja tinggi dan teknologi perawatan permukaan canggih untuk memenuhi persyaratan kinerja yang lebih tinggi dan lingkungan aplikasi yang lebih kompleksMisalnya, penerapan nanomaterial dapat meningkatkan konduktivitas listrik dan sifat mekanik dari pegas baterai,sementara proses pengolahan permukaan yang ramah lingkungan akan lebih berfokus pada pengurangan dampak lingkunganSelain itu, dengan proliferasi perangkat elektronik cerdas,Desain pegas baterai akan semakin menekankan kecerdasan dan integrasi untuk mencapai pengalaman pengguna yang lebih baik dan kinerja sistem yang lebih tinggi.

2025

01/08